
118 Digital Fundamentals

to traditional parallel buses. Computer architectures often include a variety of microprocessor pe-
ripheral devices with differing bandwidth requirements. Main memory, both RAM and ROM, is a
central part of computer architecture and is a relatively high-bandwidth element. The fact that the
CPU must continually access main memory requires a simple, high-bandwidth interface—a parallel
bus directly or indirectly driven by the CPU. Other devices may not be accessed as often as main
memory and therefore have a substantially lower bandwidth requirement. Peripherals such as data
acquisition ICs (e.g., temperature sensors), serial number EEPROMs, or liquid crystal display
(LCD) controllers might be accessed only several times each second instead of millions of times per
second. These peripherals can be directly mapped into the CPU’s address space and occupy a spot
on its parallel bus, but as the number of these low-bandwidth peripherals increases, the complexity
of attaching so many devices increases.

Short-distance serial data links can reduce the cost and complexity of a computer system by re-
ducing interchip wiring, minimizing address decoding logic, and saving pins on IC packages. In
such a system, the CPU is connected to a serial controller via its parallel bus, and most other periph-
erals are connected to the controller via several wires in a bus topology as shown in Fig. 5.18.

Such peripherals must be specifically designed with serial interfaces, and many are. It is common
for low-bandwidth peripheral ICs to be designed in both parallel and serial variants. In fact, some
devices are manufactured with only serial interfaces, because their economics overwhelmingly fa-
vors the reduction in logic, wiring, and pins of a serial data link. A temperature sensor with a serial
interface can be manufactured with just one or two signal pins plus power. That same sensor might

Wait for incoming packet
Wait for activity to finish and

minimum inter-frame gap

Destination
address matches 0xFF or

node address?

Finish storing header

Address parity error?

Store LEN payload bytes

Parity error in payload?
Send negative acknowledge

packet

Send ACK reply packet
Pass new packet to

application

No

Yes

Yes

Wait for transmit request

Send packet, Clear timer

Acknowledge Received?
No

Receive Process Transmit Process

Timer = Timeout?

Increment timer

Yes

Positive reply?
No

Length parity error?
Yes

Wait for activity to finish and
minimum inter-frame gap

Destination
address matches node

address?

No

FIGURE 5.17 Hypothetical network driver flowchart.

-Balch.book  Page 118  Thursday, May 15, 2003  3:46 PM



Serial Communications 119

require 16 or more signal pins with a byte-wide parallel interface. Not only is the package cost re-
duced, its greatly reduced size enables the IC to be located in very confined spaces. Products includ-
ing cell phones and handheld computers benefit tremendously from small IC packages that enable
small, consumer-friendly form factors.

Interchip serial interfaces must be kept fairly simple to retain their advantages of low cost and
ease of use. Industry standard interfaces exist so that semiconductor manufacturers can incorporate
mainstream interfaces into their ICs, and engineers can easily connect multiple manufacturers’ ICs
together without redesigning the serial interface for each application. Many of these standard inter-
faces are actually proprietary solutions, developed by individual semiconductor manufacturers, that
have gained wide acceptance. Two of the most commonly used industry standards for interchip se-
rial communications are Philips’ inter-IC bus (I2C) and Motorola’s serial peripheral interface (SPI).
Both Philips and Motorola have long been leaders in the field of small, single-chip computers called
microcontrollers that incorporate microprocessors, small amounts of memory, and basic peripherals
such as UARTs. It was therefore a natural progression for these companies to add inexpensive inter-
chip serial data links to their microcontrollers and associated peripheral products.

I2C and SPI support moderate data rates ranging from several hundred kilobits to a few megabits
per second. Because of their target applications, these networks usually involve a single CPU master
connected to multiple slave peripherals. I2C supports multiple masters and requires only two wires,
as compared to SPI’s four-plus wires.

I2C consists of a clock signal, SCL, and a data signal,
SDA. Both are open-collector signals, meaning that the
ICs do not actively drive the signals high, only low. An
open-collector driver is similar to a tri-state buffer, al-
though no active high state is driven. Instead, the output
is at either a low- or high-impedance state. The open-col-
lector configuration is schematically illustrated in Fig.
5.19. The term open-collector originates from the days
of bipolar logic when NPN output transistors inside the
chips had no element connected to their collectors to as-
sert a logic high. This terminology is still used for
CMOS logic, although open-drain is the technically cor-
rect term when working with MOSFETs. A pullup resis-
tor is required on each signal (e.g., SCL and SDA) to
pull it to a logic 1 when the ICs release the actively

driven logic 0. This open-collector arrangement enables multiple IC drivers to share the same wire
without concern over electrical contention.

Under an idle condition, SCL and SDA are pulled high by their pullup resistors. When a particu-
lar IC wants to communicate, it drives a clock onto SCL and a pattern of data onto SDA. SCL may
be as fast as 100 kHz for standard I2C and up to 400 kHz for fast I2C buses. I2C is a real network that
assigns a unique node address to each chip connected to the bus. As such, each transfer begins with a
start sequence followed by seven-bit destination address. A read/write flag and data follow the ad-

CPU
Serial

Interface
Controller

parallel
CPU bus Serial

Peripheral
Serial

Peripheral
Serial

Peripheral

serial peripheral bus

FIGURE 5.18 Generic interchip serial bus topology.

open-
collector

driver

open-
drain
driver

open-
collector

driver

+V

shared bus wire

FIGURE 5.19 I2C open-collector schematic
representation.

-Balch.book  Page 119  Thursday, May 15, 2003  3:46 PM




